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ABSTRACT 
The lens is one of the most commonly used optical elements.  Yet it is sometimes difficult to make accurate effective 
focal length and pupil position measurements, especially for long focal length lenses.  Many measurement methods 
rely on a mechanical measurement to determine the back focal length, or may require careful operator discrimination 
in determining the best focus position.  Aberrations may confuse an automatic focal length measurement system.  
However, an accurate determination of the optical properties of a lens is often critical for building an accurate system 
model. 

We have developed a method for measurement of the focal length, pupil plane and collimation positions of positive 
lenses using a Shack-Hartmann wavefront sensor.  The SHWFS uses a micro-optic lens array to separate the 
incoming wavefront into a pattern of focal spots.  The position of these focal spots is related to the local wavefront 
slope.  Wavefront reconstruction allows the complete incident wavefront to be retrieved.  A Zernike decomposition 
reconstructor is used to separate the effects of lens focal power from other aberrations.  The lens under test is 
illuminated by a point source on a computer-controlled stage.  The transmitted wavefront was recorded by the 
SHWFS while the source was translated over a few mm range.  By analyzing the Zernike coefficient associated with 
defocus, we were able to extract the focal length, pupil plane and collimation positions using a least squares fitting 
procedure. 

This procedure was tested for a variety of lenses of varying focal lengths, from 10 to 1000 mm focal length, and 
showed excellent repeatability and accuracy.  These measurements were compared to knife-edge, manufacturer’s 
specification, and ray-tracing analysis for verification testing. 

Keywords: Focal length, wavefront sensor, Shack-Hartmann, Hartmann-Shack, lens testing, optical testing, optical 
metrology, lens testing, focal length measurement, lens power, vergence 

1 INTRODUCTION 
The key property of the most common optical element, the lens, is its focal length.  In almost every application it is 
important to know an accurate value for this property.  Yet this is often a difficult parameter to accurately measure, 
especially for longer focal length (or lower numerical aperture) lenses.  In addition, spherical and other aberrations 
may make measurement of the paraxial properties difficult and ambiguous.  Thus a method for accurately determining 
this property would be useful for a number of applications. 

Various methods have been used for measuring the focal lengths of lenses1.  During manufacture, it is common 
practice to use a test plate to determine the radius of curvature, and then, with a known index of refraction, the focal 
length may be calculated.  The location of the principle plane requires some ray-tracing or other analysis, and the 
tolerances must be known in order to estimate the potential error.  In many ways this may be the most accurate means 
for determining the focal length. 

Other methods include knife-edge test, magnification test, auto-collimation, nodal slide bench, and minimum spot 
size.  In most of these the measurement depends strongly on the aperture of the test, and a mechanical measurement 
must be made to some lens surface or edge.  Thus the accuracy of the measurement may depend on knowledge of 
exactly how the lens is mounted. 



   

For many applications, the most important parameter is the effective focal length2.  This is the distance from the 
principle plane to the focal point.  This is the parameter that is used in thin lens equations and that is relevant for 
paraxial optical system design.  Even for systems with aberrations, the effective focal length or paraxial performance 
is usually the baseline or starting condition. 

One way to measure the focal length of a lens is to measure its image formation properties.  This requires 
measurement of the object and image distances and then calculation using the thin lens equation.  While this still 
requires mechanical measurements from some reference plane, and includes the effects of aberrations, it can produce 
good results for finding the effective focal length.  Adopting a procedure that involves multiple measurements and 
utilizes a least squares error minimization approach can be used to reduce the effect of error of any individual 
measurement3. 

With the advent of accurate wavefront sensors, it is possible to automate the acquisition and analysis process.  The 
wavefront sensor also allows separation of the paraxial (focus) parameters from other higher order effects (such as 
spherical aberration of coma).  This paper describes an extension of the method presented by Pernick and Hyman3 
using a Shack-Hartmann wavefront sensor. 

2 SHACK HARTMANN WAVEFRONT SENSING 
Shack Hartmann wavefront sensing has matured significantly in the last several years.  While historically these 
sensors were used for adaptive optics in astronomy and high energy lasers, they have recently been applied to a wide 
range of problems, including laser beam characterization4,5, fluid turbulence measurement6,7,8, optical system 
alignment9, ophthalmic metrology10, wafer metrology11, optical metrology for both large12 and small13 optics.  

2.1 Principle 
The basic measurement principle is similar to the Hartmann test of the early 1900s.  In this test, a mask with holes was 
placed in front of the lens to be tested.  Light 
passing through the holes was examined at two 
planes, typically before and after the focal 
plane.  This allowed a kind of physical ray 
tracing of the optic.  By examining the shift in 
position of the rays compared to that of an 
ideal lens, the aberrations, wavefront map, 
MTF, and other parameters could be 
determined. 

In the late 1960s, Roland Shack proposed first 
shifting the measurement plane to the pupil 
plane and then using a grid of lenslets to 
sample larger areas14, while still providing 
measurements over sub-apertures. 

Figure 1 shows the arrangement of a typical 
modern Shack-Hartmann sensor.  In this case a 
lenslet array, fabricated using photolithography 
and etching in fused silica, is used to collect 
the light and direct it onto a CCD array sensor.  
The grid of pixels on the CCD array provides 
an accurate measurement of the focal spot 
positions.   

The lenslet array breaks up the incident wavefront into a large number of small sub-apertures.  The key assumption is 
that, over each sub-aperture, the only wavefront variation is local tilt.  This is readily achieved with sufficiently high-
resolution lenslet15.  The light from each of these samples is collected by the lenslet and focused on the detector.  
Since the region is small, this usually creates a well-formed focal spot whose position is shifted corresponding to the 

 

Figure 1 Basic arrangement of a Shack-Hartmann wavefront 
sensor. 



   

local wavefront tilt.  The CCD detector records this focal spot position, and so, by comparison against a reference, the 
local slope can be determined.  With a large number of local slope measurements, the wavefront surface can be 
numerically  reconstructed. 

Since the information for all of the focal spots is obtained simultaneously, all of the needed information is obtained in 
a single CCD frame.  With modern CCD camera systems very short exposure times can be used.  If there is tilt caused 
by vibration that occurs between successive frames, it will result in a lateral shift of all the focal spots on the CCD.  
This is readily identified and subtracted out (or measured if it is useful).  The single frame acquisition also means that 
if the wavefront structures are dynamic (that is, changing rapidly), the instantaneous wavefront will be measured with 
little error.   

The focal spot locations are usually determined by an algorithm called the centroid algorithm*: 
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where Sj is the modified irradiance distribution over a region AOIk corresponding to the light from a particular lenslet.   
A similar equation applies for the y-coordinate of the spot locations.  Typically, a threshold algorithm is applied to the 
irradiance distribution to produce the modified distribution, although other algorithms may apply (deconvolution, for 
instance). 

A reference beam is recorded for use in determining the wavefront gradients from the spot position measurements.  
Usually this is obtained by recording a plane wave, although the reference may also be calculated numerically.  This 
provides a set of reference centroids xk

ref and yk
ref. 

The wavefront gradient for each location k on the sensor is: 
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where f is the lenslet to detector spacing, which is usually set to the focal length of the lenslet. 

The wavefront gradients are connected by the assumption that the wavefront is continuous.  While there are some 
situations where this assumption breaks down, for these very small lenslets it is usually quite realistic.  Thus for each 
point k on the sensor lenslet coordinates (xk, yk): 
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which is just the definition of the gradient in terms of the scalar field w(x,y), except that we have substituted the 
measured local gradients βx and βy.   

This equation can be solved for the wavefront w(x,y) in a number of ways.  The surface can be described in terms of 
polynomials, and then a least squares fit routine can be used to find the appropriate coefficients.  This is the so-called 
Modal method.  Alternatively, the slope data can be used to solve for a self-consistent set of wavefront heights. 

2.2 Wavefront curvature 
The wavefront curvature can be derived directly from the solution to Equation 3 through the use of a polynomial 
expansion: 

                                                           
* This is actually a misnomer.  It would more accurately be called a center-of-mass algorithm, since it includes a weighted distribution in the 
calculation, and not just the shape of the boundary.  For connection with the literature in this subject, we’ve continued to use the term centroid to 
refer to the determination of these spot positions. 
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where the polynomials Pk(x,y) can be any from the Taylor, Zernike, Tchevechev or other polynomials.  These 
polynomials need not necessarily be orthogonal, but there are certain advantages if orthogonal polynomials are used.  
Following the methods of Southwell16, the analytical expression for the wavefront slope at each point (x,y) is given 
as:’ 
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A merit function that describes the fit error of the in terms of the polynomial expansion coefficients may be formed 
using all the data acquired at each point (xi, yi): 
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This may be minimized with respect to the fit coefficients Ck to find the solution for the wavefront surface.  The 
wavefront curvature is that portion of the wavefront that may be described by a sphere.  That is: 
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for a paraxial system this may be written: 
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It should be noted that the focal length of a lens is a paraxial property.  Expansion of the wavefront in terms of 
Zernike polynomials provides a convenient means for expressing the wavefront in terms of various optical 
aberrations.  The wavefront curvature, spherical aberration, coma, trefoil and other aberrations may be expressed 
directly in terms of specific polynomials17.  One advantage of the use of Zernike decomposition is that the paraxial 
curvature may be separated from other, higher order, effects. 

3 MULTI-CURVATURE ANALYSIS 
The Shack-Hartmann wavefront sensor (SHWFS) is capable of measuring the radius of curvature of the incident 
wavefront with excellent accuracy.  This can be used in the analysis of optical system parameters.  This is particularly 
relevant for analysis of the focal length of lenses, or for calibration of the wavefront sensor itself.  Pernick and  
Hyman describe a method for measuring the focal lengths of lenses by finding conjugate image/object locations3.  A 
least squares fit was used with some accuracy to find the lens parameters.  In this early work, the image plane location 
was determined simply by looking for the location of best focus.  However, this requires some judgment on the part of 
an operator, and for lenses with significant aberrations it would be difficult to separate the effects of the paraxial 
property focal length from other effects such as spherical aberration. 

3.1 Analysis 
Figure 2 shows the basic geometry for measuring optical system parameters using a wavefront sensor to measure the 
radius of curvature as the source (S) position (Z) is varied.  In this figure, Z0 is the location of the source for a 
collimated beam, Z is the stage position of the source at a measurement point, f is the focal length of the lens, L is the 
distance from the wavefront sensor to the principle plane of the lens, and R is the measured radius of curvature on the 
wavefront sensor. 



   

 
The radius of curvature R may be calculated from the wavefront sensor measurement as: 
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where a is the radius of the circle used to calculate the Zernike coefficient, and C21 is the coefficient for the defocus 
term.  This polynomial is given by: 
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where x and y are the coordinates across the aperture. 

 
The lens obeys the thin lens formulation, that is: 
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Replacing this with the relevant parameters results in: 
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Note that the radius of curvature will go to infinity at collimation (this is the definition of collimation).  To avoid 
including parameters that go through infinity in the analysis, we formulate instead the mathematics in terms of the 
measured vergence (or power) at the wavefront sensor.  That is: 

 

Figure 2 Multi-curvature analysis of a lens element 
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Solving Equation 12 for the power 1/R yields: 
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This allows us to plot the measured power as a 
function of the expected power, given a sequence of 
measurements, if the various lens parameters are 
known.  It is also possible to determine the lens 
parameters (f, L, Z0) from a sequence of 
measurements using a least squares fit procedure. 

3.2  Measurement 
Figure 3 shows an example of a measurement for a 
301 mm focal length lens.  In this case 101 
measurements were acquired with the position of the 
source varied over a +/-12 mm range.  If the 

calibration of the wavefront sensor is known, then a fit of Equation 14 with parameters f, L, and Z0 can accurately be 
used to predict this curve. 

 
Figure 4 shows the measured lens power compared to the predicted power from equation 14.  The residual error is also 
shown in this figure (plotted against a different scale shown on the right).  One method for calibrating the wavefront 
sensor (determining the distance between lenslet array and detector) is to calculate the slope of this line.  Any 
deviation from 1 will be the result of an incorrect distance used in the analysis of the slope data, which linearly 
propagates through the analysis.    

4 SOLUTION METHODS 
The key solution task is to solve for the parameters f, 
L, and z0.  This can be done through a least squares fit 
procedure.  An expression for the square error can be 
written: 
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where Pi is the measured power at each point zi, and 
P(zi) is Eq. 14 evaluated at zi.  Equation 14 is non-
linear in the parameters of interest.  This makes 
retrieving the focal length and other parameters more 
difficult.  Several different methods will be examined 
in the following sections. 

4.1 Quadratic fit 
Examination of Figure 3 indicates that, over a typical 
range of interest, the non-linearity is often fairly 
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Figure 3 – Measured lens power (1/R) as a function of 
stage position for a 301 mm focal length lens. 
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Figure 4 Measured lens power (1/R) as a function of 
calculated incident power. 



   

weak.  By changing variables, Equation 14 can be rewritten as: 
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where ζ = z – z0, A = f2, and B = f – L.  For the case where A >> Bζ, the binomial expansion can be used to obtain an 
approximate expression. Thus Equation 16 becomes: 
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Recalling that ζ = z – z0, we recognize that this equation is a quadratic: 
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where D = –B/A2, E = (1 + 2z0B/A)/A, and F  = –(z0/A) (1 + B z0/A).  Equation 18 may now be fit with a linear least 
squares fit routine and the parameters D, E and F readily obtained.  Once these parameters are known, f, L, and z0 may 
be uniquely determined. 

4.2 Newton lens formulation - iterative fit 
The wavefront sensor offers a convenient measurement of focal length by using the Newtonian form of the lens 

equation as shown in Hecht18, p. 163. The figure below defines the observed and free parameters. 

The measured quantities are x, the varied distance between the source and the lens and r, the measured curvature. The 
computed parameters are e, the distance between the lenslet array and, f2 and f, the focal length of the lens L. The 
Newtonian form of the lens equations cited is (with a reversed sign convention) 

 2fxy −=  (19) 

which can be reposed in terms of the measured and computed parameters as 
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This functional relationship defines the fit. If we make the substitution ϕ = f2 we have a linear problem which can be 
directly solved using the method of least squares. 

Consider a measurement series comprised of N data points of the form (xi, ri). We can define the best fit as the 
parameters ϕ and e, which minimize the merit function 
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Figure 5 Schematic of the experimental setup. The lens of interest is denoted by L. A wavefront sensor WFS is 
placed an unknown distance downstream from the lens. A point source is then placed at the collimation point 
f1, the collimation being verified with a shear plate. Then, a precision stage is used to move the point source a 
distance x from collimation. As the source moves away from collimation, the wavefront sensor will record 
smaller radii of curvature. The radius or curvature r is the sum showing the sign convention. As drawn, x < 0, 
and the parameters e, r, and y are all greater than zero. 
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where the errors σi are for now considered to be equal, relegating them to a superfluous multiplicative constant. These 
terms will be reintroduced at the end. Also, to reduce visual clutter we will abandon the explicit bounds on the 
summation terms since all summations are over all N data points.  

As always we find extrema by solving the equations when the first derivatives are set equal to zero. In other words we 
simultaneously require that  
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The resulting two linear equations can be solved immediately 
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where the determinant is given by 
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The error propagation has one small wrinkle in it; otherwise we follow the standard methodology. See, for example, 
Bevington19, chap. 6. The error terms are  
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where the parent sample variance (Bevington19, p. 114) is approximated by the experimental variance 
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The wrinkle is that we are interested in the error propagation for the focal length f, not the parameter ϕ. We simply 
need to invert the formula for the error in a quadratic term (see for example Bevington19, p. 61). The error in a 
quadratic measurement g is simply 

 ( ) 2222 2 gg ggg σσ +→± . (27) 

We are now able to relate the computed error in the parameter ϕ to the error in the focal length: 
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This method works quite well when the collimation of the system is well known. However, practical laboratory 
measurements may not allow for precise determination of the collimation point. In these cases, we generalize the 
development to include an offset term δ. 

The new merit function becomes 
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Lamentably, the fitting parameters e, ϕ, and δ are no longer linear. As an example, consider first derivative (ignoring 
the σ’s) for the e parameter: 
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Clearly there is no hope of posing a linear system like 
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and we are driven to an of a number of iterative methods. 

4.3 Full non-linear iterative fit 
The parameters f, L and z0 can be determined through a least squares fit procedure.    The expression for the sum-
squared error, Eq. 15, is differentiated with respect to the various parameters (f, L, and z0), is set equal to zero to find 
the location of minimum error: 
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and similarly for L and z0.  This results in three independent non-linear equations in f, L, and z0 that must be solved 
simultaneously to arrive at the solution for the parameter values.  While there are a number of standard methods for 
obtaining such solutions, they usually involve some form of iterative solution methodology.  It should be noted that 
the quadratic fit method will generally give a very good starting value for all the parameters.  This allows the iterative 
fit routine to only slightly adjust the parameter values, thereby minimizing any problems with instability or erroneous 
solutions. 

5 ERROR ANALYSIS 
Equation 14 can be evaluated to determine the sensitivity of the measured parameters to the noise or error in the 
experimental data.  While Equation 15 yields a value for the residual RMS fit error, this does not give a representation 
of the error in determining the parameters f, L and z0. The error in these parameters can be written: 
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Although a better formulation may be to used the method of Bevington, Chapter 419.  Equation 14 can then be 
evaluated to produce the required derivatives: 
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The expected error in each of the parameters can thus be evaluated by using Eq. 33-35, given the derivative 
expressions 36-38, to form an error estimate for each point.  The root mean square error evaluated at all the 
measurement points gives a measure of the expected 
error. 

6 RESULTS 
This method for measuring the focal length of a lens was 
used to measure the focal lengths of three lenses with 
widely differing characteristics.  These lenses had focal 
lengths of ~300 mm, 50 mm, and 37 mm.  The 300-mm 
and 50-mm lenses were both doublets, while the 37-mm 
was an extremely fast (f# 0.74) multi-element lens.  
These lenses were measured in place in a contact lens 
mold metrology instrument that had built-in alignment 
and adjustment stages for moving various parts of the 
apparatus.  By placing a bare fiber end on the 
appropriate stage, the data could readily be recorded as 
needed by the multi-curvature analysis (MCA) method. 

Figure 7 shows the measure power as a function of stage 
position for a ~50 mm lens, where the distance from the 
lenslet array to the lens is about equal to the focal length 
of the lens.  Notice in Eq. 14 that, for f = L, the equation 
becomes entirely linear with slope 1/f2.  This is also 
evident in Figure 7. 

In Figure 6 a ~37 mm focal length lens was measured 
where the lens was placed a considerable distance from 
the wavefront sensor.  In this case the curve is not linear, 
indicating that f - L is not near zero. 

6.1 Comparison of analysis methods 
For the three lenses described in Figure 3, Figure 7 and 
Figure 6, we calculated the lens parameters (f, L and z0) 
using the three methods described in section 4.  Solutions 
were obtained using both a programmed Visual Basic 
implementation and using the numerical solver in 
Microsoft Excel.  Variations are expected only through 
differences in precision of the two programs. The 
comparison of the residual fit error (Eq. 15) is shown in 
Figure 8 where, except for Lens L3 (37 mm f.l.), the 
values are very low.  For this lens the measurement plane 
is considerably different from f = L. 
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Figure 6– Measured lens power (1/R) as a function of 
stage position for a 37 mm focal length lens. 
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Figure 7– Measured lens power (1/R) as a function of 
stage position for a 50 mm focal length lens. 
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Figure 8– Residual RMS error (power) for the three 
lenses using the different analysis methods.  MV is the 
fully non-linear fit method, QD is the Quadratic fit 
method, and NF is the Newton fit method. 



   

This introduces more non-linearity, which makes the 
analysis more sensitive to approximations and 
assumptions.  Note that the fit error is still very low for 
the full iterative fit (MV) case.  

The variation in the measured focal length is shown in 
Figure 9.  In all cases the focal length is very close to 
the same number, even for the lens that was distant 
from the WFS (L3).  The actual variation in the various 
positions is less than 0.3% in all cases. 

The distance between the wavefront sensor lenslet array 
and the principle plane of the lens is somewhat harder 
to measure with this method.  This is easiest to see by 
noting that this distance enters through Eq. 12 by 
addition with the radius of curvature measured by the 
wavefront sensor.  As long as the radii and this 
measurement plane distance are comparable, there 

should be reasonable accuracy in determining this 
position.  However, the wavefront sensor can accurately 
make measurements of radii that are many tens of meters.  
For a distance L that is a few tens of mm, the accuracy 
may not be sufficient due to numerical instabilities.  This 
can also be seen in Eq. 37, where the error grows as 1/P2.  
For nearly collimated measurement points, P is near zero, 
and so the error in Equation 37 grows rather large. 

Figure 10 shows the lens to detector distance calculated 
with the different methods.  While the methods agree 
fairly well for the cases where the lens is near the 
detector, the calculated distance has considerable 
variation for the case with a larger measurement plane 
distance.  For all these cases the actual distance agrees 
closely with the non-linear fit method (MV). 

7 ACCURACY AND REPEATABILITY 

To assess the repeatability of the focal length 
measurement process, we conducted an R&R 
reproducibility study.  To this end, a number of lenses 
were repeatedly measured.  Figure 11 shows the 
measured focal lengths for six different lenses from 100 
mm to 1000 m focal lengths.  While it appears that only 
one point is plotted for each focal length, in each case ten 
different measurements are plotted on the graph, but the 
points lie on top of each other.  The data correlates with 
the nominal focal length (obtained from the 
manufacturer) almost perfectly, R2=0.9999.   The slope 
of 1.0145 shows a 1.4% error in measured focal length.  
This, in fact, may be biased by the measurements at the 
longer focal lengths where the nominal focal length may 
not be known as well.  In this case there is considerable 
error in the nominal focal length (which is unknown). 

Focal length

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00

L1 L2 L3
Lens

Fo
ca

l L
en

gt
h 

(m
m

) MV

QD(excel)

QD (C2D)

NF(C2D)

 
Figure 9– Lens focal length for the three lenses using 
the different analysis methods.   
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Figure 10– Lens to measurement plane distance for 
the three lenses using the different analysis methods.   

Focal Length
y = 1.0145x - 4.4192

R2 = 0.9999

0
200
400
600
800

1000
1200

0 500 1000 1500

Nominal Focal Length

C
al

cu
la

te
d 

Fo
ca

l L
en

gt
h

Focal Length Linear (Focal Length)
 

Figure 11 – Lens focal length for various lenses 
measured using the multi-curvature method.  For each 
focal length, ten separate measurements are plotted.  



   

The measurement of the principle plane distance to 
the lenslet array is not so certain.  Figure 12 shows 
the determination of the measurement plane distance 
for a 500 mm focal length lens where the wavefront 
sensor was set at different distances.  Note that there 
is considerable scatter in the data for each 
measurement location while the general trend is 
apparent.  The correlation between measured data 
and the WFS position is only 0.89 with an R2 of 
0.86.  This can be understood if the range of 
measured powers is also considered.  The point 
source was moved by only +/- 40 mm for this lens, 
resulting in (according to Eq. 14) a total maximum 
diopter power of 0.15 D.  This represents a 
maximum wavefront radius of curvature of over 6 m.  
Hence it is not surprising that it is difficult to 
determine a parameter with much smaller value that 
is added to the measured radius of curvature 
(according to E. 12).  To obtain an accurate measure 
for this parameter, the values of the measured radius 
of curvature and the measurement plane distance 
would have to be comparable. 

It should be understood that, similar to the measurement of the principle plane of Pernick and Hyman3, the principle 
plane of the lens is still accurately determined.  That is because it is not the measurement plane distance, L, that is the 
correct value to use for determining the principle plane, but the collimation position Z0.  If the lens and stage are 
arranged so that there is a fixed mechanical relationship between some surface of the lens and some position of the 

stage, then Z0 can be used to determine the exact 
location of the measurement position. 

In Figure 13, the repeatability of measuring the 
focal length is shown more explicitly than in Figure 
11.  In this case the standard deviation is shown for 
all the measurements for six different lenses.  Also 
shown is the measured repeatability for ten 
measurements using the Foucault knife-edge 
technique.  Surprisingly, this technique had about 
the same percent error for all the focal lengths.  By 
comparison, the MCA method had significantly 
improved repeatability for the shorter focal lengths, 
and better repeatability in all cases. 

8 CONCLUSION 
We have developed a method for measuring the 
focal length of lenses with excellent accuracy.  
Several different methods for determining the focal 
length, measurement plane distance and collimation 
position were developed and tested.  It was 
routinely possible to make measurements that were 
better than 0.5% in the focal length (usually less 
than 0.1%); however, instability in the formulation 
causes difficulty in determining the measurement 
plane accurately.  The focal length calculation 
compared to the knife-edge method showed 

y = 0.8918x + 69.3
R2 = 0.8597
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Figure 12 – MCA method determined measurement plane 
distance (distance from lenslet array to lens principle 
plane) for a 500 mm lens as a function of lens distance.  
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Figure 13– Repeatability of ten measurements using the 
MCA method for several different focal lengths.  The 
repeatability of measuring the focal length of the same 
lenses using the knife-edge method is also shown for 
comparison.  



   

improved repeatability in most cases. 

9 ACKNOWLEDGEMENTS 
The authors would like to acknowledge Isaac Neal for help with data acquisition and analysis. 

10 REFERENCES 
                                                           
1  Jurgen R. Meyer-Ardent Introduction to Classical and Modern Optics, Prentice Hall, 1972 
2 R. R. Rammage, D. R. Neal, R. J. Copland, “Application of Shack-Hartmann wavefront sensing technology to 

transmissive optic metrology,” SPIE 4779-27 (2002). 
3 J. B. Pernick and B Hyman,  “Least-squares technique for determining principal plane location and focal length,” 

Appl. Optics 26(15), pp. 2938-2939 (1987). 
4 D. R. Neal, W. J. Alford, and J. K. Gruetzner, “Amplitude and phase beam characterization using a two-dimensional 

wavefront sensor”, SPIE 2870, pp.72-82 (1996). 
5 D. R. Neal, J. K. Gruetzner, D. M. Topa, J. Roller, “Use of beam parameters in optical component testing,”  SPIE 

4451, pp. 394–405 (2001). 
6 W. J. Yanta, W. C. Spring, III, J. F. Lafferty, A. S. Collier, R. L. Bell, D. Neal, D. Hamrick, J. Copland, L. 

Pezzaniti, M. Banish, R. Shaw, “Near-and far-field measurements of aero-optical effects due to propagation 
through hypersonic flows,” AIAA-2000-2357 (2000). 

7 Neal, D.R., Hedlund, E., Lederer, M., Collier, A., Spring, C., Yanta, W., “Shack-Hartmann Wavefront Sensor 
Testing of Aero-optic Phenomenon,” AIAA 98-2701, 20th AIAA Advanced Measurement and Ground Testing 
Technology Conference, Albuquerque, NM, June 1998. 

8 Neal, D.R., O’Hern., Torczynski, J.R., Warren, M.E. and Shul, R., “Wavefront Sensors for  Optical Diagnostics in 
Fluid Mechanics: Applications to Heated Flows, Turbulence and Droplet Evaporation,” from Optical Diagnostics 
in Fluid and Thermal Flows, SPIE 2005, 1993. 

9 D. R. Neal and J. Mansell, “Application of Shack-Hartmann Wavefront Sensors to Optical System Calibration and 
Alignment,” Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine, 
Gordon Love, Ed., World Scientific (2000). 

10 D. R. Neal, D. M. Topa, and James Copland “The effect of lenslet resolution on the accuracy of ocular wavefront 
measurements,” SPIE 4245 (2001). 

11 T.D. Raymond, D.R. Neal, D.M. Topa, and T.L. Schmitz,  “High-speed, non-interferometric nanotopographic 
characterization of Si wafer surfaces,” SPIE 4809-34, 2002. 

12 D. R. Neal, P. Pulaski, T.D. Raymond, and D. A. Neal, “Testing highly aberrated large optics with a Shack-
Hartmann wavefront sensor,”  SPIE 5162, 2003. 

13 D. R. Neal, D. J. Armstrong and W. T. Turner, “Wavefront sensors for control and process monitoring in optics 
manufacture,” SPIE 2993, pp. 211–220, 1997. 

14 B. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing” Journal of Refractive Surgery, 
17 (Sept/Oct 2001). 

15 D. R. Neal, J. Copland, D.A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” SPIE 4779, 2002. 
16 W.H. Southwell “Wave-front estimation from wavefront slope measurements” JOSA 70, pp.993-1006 (August 

1980) 
17 D. Malacara, Optical Shop Testing 2nd Ed., John Wiley & Sons, New York 
18 E. Hecht, Optics, 3rd edition, Addison-Wesley (1998). 
19 P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, N.Y. (1969). 


